12,070 research outputs found

    Non-reciprocal few-photon devices based on chiral waveguide-emitter couplings

    Full text link
    We demonstrate the possibility of designing efficient, non reciprocal few-photon devices by exploiting the chiral coupling between two waveguide modes and a single quantum emitter. We show how this system can induce non-reciprocal photon transport at the single-photon level and act as an optical diode. Afterwards, we also show how the same system shows a transistor-like behaviour for a two-photon input. The efficiency in both cases is shown to be large for feasible experimental implementations. Our results illustrate the potential of chiral waveguide-emitter couplings for applications in quantum circuitry.Comment: Mathematica notebook attached for calculation of detection probabilitie

    A chiral route to spontaneous entanglement generation

    Full text link
    We study the generation of spontaneous entanglement between two qubits chirally coupled to a waveguide. The maximum achievable concurrence is demonstrated to increase by a factor of 4/e∼1.54/e \sim 1.5 as compared to the non-chiral coupling situation. The proposed entanglement scheme is shown to be robust against variation of the qubit properties such as detuning and separation, which are critical in the non-chiral case. This result relaxes the restrictive requirements of the non-chiral situation, paving the way towards a realistic implementation. Our results demonstrate the potential of chiral waveguides for quantum entanglement protocols.Comment: 5 pages + 1 page supplemental, 4 figure

    Weighted random--geometric and random--rectangular graphs: Spectral and eigenfunction properties of the adjacency matrix

    Get PDF
    Within a random-matrix-theory approach, we use the nearest-neighbor energy level spacing distribution P(s)P(s) and the entropic eigenfunction localization length ℓ\ell to study spectral and eigenfunction properties (of adjacency matrices) of weighted random--geometric and random--rectangular graphs. A random--geometric graph (RGG) considers a set of vertices uniformly and independently distributed on the unit square, while for a random--rectangular graph (RRG) the embedding geometry is a rectangle. The RRG model depends on three parameters: The rectangle side lengths aa and 1/a1/a, the connection radius rr, and the number of vertices NN. We then study in detail the case a=1a=1 which corresponds to weighted RGGs and explore weighted RRGs characterized by a∼1a\sim 1, i.e.~two-dimensional geometries, but also approach the limit of quasi-one-dimensional wires when a≫1a\gg1. In general we look for the scaling properties of P(s)P(s) and ℓ\ell as a function of aa, rr and NN. We find that the ratio r/Nγr/N^\gamma, with γ(a)≈−1/2\gamma(a)\approx -1/2, fixes the properties of both RGGs and RRGs. Moreover, when a≥10a\ge 10 we show that spectral and eigenfunction properties of weighted RRGs are universal for the fixed ratio r/CNγr/{\cal C}N^\gamma, with C≈a{\cal C}\approx a.Comment: 8 pages, 6 figure

    Model-Free Control Design Procedure Applied to Lateral Vehicle Control

    Full text link
    Model-Free Control has proven its performance in a wide variety of systems. Although its adequate tuning can be achieved using the knowledge of the system and optimization-based approaches, there is not yet a systematic design procedure for this kind of control scheme. In this paper, a non-iterative Three Term Controller tuning procedure is adapted and extended to fit Model-free controllers' structure. This procedure is successfully applied to design the lateral control of an automated car with realistic performance requirements.Comment: submitted to IFAC World Congress 202

    Harvesting Excitons Through Plasmonic Strong Coupling

    Full text link
    Exciton harvesting is demonstrated in an ensemble of quantum emitters coupled to localized surface plasmons. When the interaction between emitters and the dipole mode of a metallic nanosphere reaches the strong coupling regime, the exciton conductance is greatly increased. The spatial map of the conductance matches the plasmon field intensity profile, which indicates that transport properties can be tuned by adequately tailoring the field of the plasmonic resonance. Under strong coupling, we find that pure dephasing can have detrimental or beneficial effects on the conductance, depending on the effective number of participating emitters. Finally, we show that the exciton transport in the strong coupling regime occurs on an ultrafast timescale given by the inverse Rabi splitting (∼10 \sim10~fs), orders of magnitude faster than transport through direct hopping between the emitters.Comment: 5 pages, 3 figure

    Entanglement of two qubits mediated by one-dimensional plasmonic waveguides

    Get PDF
    We investigate qubit-qubit entanglement mediated by plasmons supported by one-dimensional waveguides. We explore both the situation of spontaneous formation of entanglement from an unentangled state and the emergence of driven steady-state entanglement under continuous pumping. In both cases, we show that large values for the concurrence are attainable for qubit-qubit distances larger than the operating wavelength by using plasmonic waveguides that are currently available.Comment: 4 pages, 4 figures. Minor Changes. Journal Reference added. Highlighted in Physic
    • …
    corecore